
会员
Java Web开发学习手册
更新时间:2020-04-04 15:11:24 最新章节:第19章 解密Spring技术
书籍简介
本书共分为4篇,21章,包括JavaWeb概述、搭建开发环境、Java语言基础、JavaScript语言、XML基础、JSP语法、JSP内置对象、JavaBean技术、Servlet技术、EL表达式、JSTL标签库、数据库应用开发、Hibernate技术和Spring技术。最后两章为项目实战练习,分别为论坛和网上商城,它们都应用了目前最流行的3大框架技术。通过这两个练习,希望读者能够更加深刻的理解和运用Struts2、Hibernate和Spring技术。
上架时间:2011-04-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
朱晓 卢瀚 王国辉等编著
最新上架
- 会员虽然技术在进步,硬件也越来越物美价廉,但如今软件工程师仍需要关注程序的性能优化。本书将介绍软件效率问题、Go语言快速入门知识、如何实现高效编程,告诉大家如何高效进行性能优化,以及何时进行,并给出需要的工具和相关知识,让你使用较少的资源实现高效编程。计算机27.3万字
- 会员本书全面深入地介绍Elasticsearch的核心功能及其工作机制。本书由浅入深,从Elasticsearch的基本用法和架构原理,以及倒排索引、分片、节点角色和相关性等核心概念讲起;然后深入探讨数据处理和索引管理,涵盖映射模式、数据类型、文本分析、索引模板;接着详细介绍词项级搜索、全文搜索、复合查询和高级搜索等Elasticsearch的搜索功能,并深入讲解聚合;最后聚焦生产环境中的Elasti计算机27.5万字
- 会员这是一套从Android性能优化本质入手,指导读者实现从硬件层到操作系统层再到应用层全面优化的实战方法论。本书由Android方向Google开发者专家撰写,融合了作者10年大厂实战经验,其中不仅包括作者实操过的监控、优化、防劣化等方向的各种典型案例,还包括多个实战小技巧,可以帮助读者解决工作中遇到的90%以上的能优化问题。本书内存、速度和流畅性、稳定性、包体积、耗电、磁盘占用、流量、降级这8个方计算机13.2万字
- 会员本书以昇腾算子编程语言AscendC的高效开发为核心,系统介绍华为面向人工智能的昇腾AI处理器架构、硬件抽象及其软件栈。本书由浅入深,通过案例讲解知识点,理论与实践并重。全书分为6章,分别介绍了昇腾AI处理器软硬件架构、AscendC快速入门、AscendC编程模型与编程范式、AscendC算子开发流程、AscendC算子调试调优和AscendC大模型算子优化。本书适合人工智能产业的研计算机9.8万字
- 会员本书全面介绍了Web标准的三个主要组成部分:HTML、CSS和JavaScript。循序渐进的讲述Web开发所涉及的三大前端技术的内容、应用技巧以及它们的综合应用。每部分都配置了大量的实用案例,图文并茂,效果直观。全书共21章,分为四个部分。在HTML部分,系统介绍了主要讲述了主要讲述了HTML基本概念、常用文本标签、文档结构标签、在网页中插入多媒体内容、列表、DIV标签、元素类型、在网页中创建超计算机13.2万字
- 会员本书采用常用技术与真实案例相结合的讲解方式,深入浅出地介绍了Python机器学习应用的主要内容。全书共8章,内容包括Python概述、NumPy数值计算、pandas基础、pandas进阶、Matplotlib绘图、scikit-learn、餐饮企业综合分析与预测、通信运营商客户流失分析与预测。前6章设置了选择题、填空题和操作题,后两章设置了操作题,希望通过练习和操作实践,读者可以巩固所学的内容。计算机7.4万字
- 会员本书书分为以下几部分:第一部分:预备知识:介绍数据结构和算法的基本概念,并演示如何搭建开发环境、编写测试用例。第二部分:数据结构:介绍常见的数据结构,包括数组、链表、矩阵、栈、队列、跳表、散列、树、图等。第三部分:常用算法:介绍常用的算法,包括分而治之、动态规划、贪婪算法、回溯、分支界定、遗传算法等。第四部分:商业实战:介绍汉诺塔及五子棋两款游戏的实现。计算机0字
同类书籍最近更新
- 会员近年来,人工智能技术得到了快速发展,并在金融风险管理领域逐渐渗透。本书旨在引导读者了解金融风险建模背后的理论,学会在金融风险管理业务中运用Python语言和一系列机器学习模型。本书分为三部分,第一部分(第1~3章)介绍风险管理的基础知识,第二部分(第4~8章)通过一系列案例将机器学习模型运用到市场风险管理、信用风险管理、流动性风险管理和运营风险管理等场景,第三部分(第9章、第10章)讲解如何对其他程序设计8.6万字
- 会员本书介绍了如何使用Python语言进行物理建模,包括完成二维和三维图形绘制、动态可视化、蒙特卡罗模拟、常微分方程求解、图像处理等常见任务。本书在第1版的基础上增加了关于用SymPy进行符号计算的新内容,介绍了用于数据科学和机器学习的pandas和sklearn库、关于Python类和面向对象编程的入门知识、命令行工具,以及如何使用Git进行版本控制。本书适合对科学计算感兴趣、想要使用Python完程序设计14万字