
会员
会话式AI:自然语言处理与人机交互
更新时间:2020-09-14 18:19:25 最新章节:12.7 本章小结
书籍简介
本书从逻辑上看分为三大部分。第一部分(第1~2章)介绍语言理解的基础概念与环境搭建。其中,第1章介绍人机交互的演变历史及技术变革。第2章介绍前置技术,重点涵盖PyTorch、TorchText、Jieba等自然语言处理学习库的使用方法。第二部分(第3~8章)介绍自然语言处理和人机交互相关的核心技术。本书强调理论与实战并行,在介绍相关核心技术的同时,每章针对相应核心算法展开实战,在真实中文数据集下验证算法性能,让读者从更深层面了解相关算法。第3章主要介绍中文分词技术,包含分词概念、分类体系、常见分词算法,并针对HMM算法进行实战。第4章主要介绍数据预处理相关内容,重点关注TorchText针对数据预处理与构建数据集的使用。词向量(第5章)、序列标注(第6章)、文本分类(第7章)、文本生成(第8章)作为4种核心技术将分别单独介绍。第三部分(第9~12章)通过讲解人机交互中4个不同类型的高阶技术,帮助读者了解人机交互中的深层技术。其中包括对话生成(第9章)、知识图谱问答(第10章)、自然语言推理(第11章)和实体语义理解(第12章)。
品牌:机械工业出版社
上架时间:2020-09-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
杜振东 涂铭
最新上架
- 会员本书从写作与ChatGPT的基础知识讲起,结合创作者的实际写作经历与写作教学经历,介绍了用ChatGPT写作的基础技巧、进阶写作的方法、不同文体的写作方法、写作变现的秘诀,让读者理解写作技巧与变现思路。计算机14.7万字
- 会员本书全面、系统地探讨科学计算的背景、机器学习的重要性以及昇思MindSpore框架在科学计算中的广泛应用。科学计算作为一门交叉学科,融合了数学、计算机科学与技术等领域的专业知识,在现代科学研究和工程实践中起着关键作用。本书以MindSpore为平台,深入研究这一全场景AI框架在科学计算中的探索与实践,通过对基础理论、行业应用和实际案例的详细介绍,为读者提供全方位的学习和参考资料。全书共8章,首先详计算机15.7万字
- 会员本书通过81个官方案例解析、120个知识点梳理,深入浅出介绍了Sora的技术原理、特色功能、创新之处、优势特点、文案工具、脚本创作、提示词技巧、绘画工具、创意应用、变现方式等,帮助读者一本书全面精通Sora的AI视频生成技术。10大专题内容、108分钟视频,手机扫码可看精华内容,同时赠送了9大超值资源:74组AI绘画提示词、104个效果文件、165页PPT课件、31集《AI摄影》教学视频、40集《计算机6.8万字
- 会员本书共十一章,主要包含四部分:第1章解读ChatGPT的基础原理和提示工程的基本概念;第2至5章介绍提示工程技巧,涵盖有效提示编写、针对复杂任务的提示设计技巧、对话中的提示设计技巧,以及提示的优化与迭代;第6章主要介绍当前ChatGPT推出的进阶功能;第7至11章结合教育领域、市场营销、新媒体运营、软件开发和数据分析实战展示提示工程技巧的应用。计算机12.9万字
- 会员本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书计算机18.2万字
- 会员本书是一本深入探讨AI在论文写作中应用的指南。本书通过九章内容,全面介绍如何在论文选题、前言写作、大纲写作、正文写作、数据分析、摘要写作、结语撰写、文稿翻译与润色、答辩PPT制作、查重投稿等环节借助AI提高效率和质量。本书不仅讨论了AI的使用伦理,还针对论文写作的具体问题,提供了提示词示例(已全部收录到秋叶AI智能鼠标平台),为论文写作提供了广阔的视角和新的方法。本书可作为缺少学术论文写作经验的大计算机7.3万字
- 会员DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合计算机17.1万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字